Representing multipliers of the Fourier algebra on non-commutative L spaces

نویسنده

  • Matthew Daws
چکیده

We show that the multiplier algebra of the Fourier algebra on a locally compact group G can be isometrically represented on a direct sum on non-commutative L spaces associated to the right von Neumann algebra of G. If these spaces are given their canonical Operator space structure, then we get a completely isometric representation of the completely bounded multiplier algebra. We make a careful study of the non-commutative L spaces we construct, and show that they are completely isometric to those considered recently by Forrest, Lee and Samei; we improve a result about module homomorphisms. We suggest a definition of a Figa-Talamanca–Herz algebra built out of these non-commutative L spaces, say Ap(Ĝ). It is shown that A2(Ĝ) is isometric to L (G), generalising the abelian situation. Subject classification: 43A22, 43A30, 46L51 (Primary); 22D25, 42B15, 46L07, 46L52 (Secondary).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some algebraic properties of Lambert Multipliers on $L^2$ spaces

In this paper, we determine the structure of the space of multipliers of the range of a composition operator $C_varphi$ that induces by the conditional expectation between two $L^p(Sigma)$ spaces.

متن کامل

Representations of Multiplier Algebras in Spaces of Completely Bounded Maps

If G is a locally compact group, then the measure algebra M(G) and the completely bounded multipliers of the Fourier algebra McbA(G) can be seen to be dual objects to one another in a sense which generalises Pontryagin duality for abelian groups. We explore this duality in terms of representations of these algebras in spaces of completely bounded maps. This article is intended to give a tour of...

متن کامل

Hermitian metric on quantum spheres

The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.

متن کامل

Embeddings of Non-commutative L P -spaces in Non-commutative L 1 -spaces, 1 < P < 2

It will be shown that for 1 < p < 2 the Schatten p-class is isometrically isomor-phic to a subspace of the predual of a von Neumann algebra. Similar results hold for non-commutative L p (N;)-spaces deened by a semi-nite, normal, faithful trace on a von Neumann algebra N. The embeddings rely on a suitable notion of p-stable processes in the non-commutative setting.

متن کامل

Commutative pseudo BE-algebras

The aim of this paper is to introduce the notion of commutative pseudo BE-algebras and investigate their properties.We generalize some results proved by A. Walendziak for the case of commutative BE-algebras.We prove that the class of commutative pseudo BE-algebras is equivalent to the class of commutative pseudo BCK-algebras. Based on this result, all results holding for commutative pseudo BCK-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009